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In this paper the Fourier transform is used to derive the elastodynamic Green function of
a plate on a viscoelastic foundation subjected to impulse and harmonic line loads. The
solution is "rst given as a convolution of the Green function of the plate. Poles of the
integrand in the integral representation of the solution are identi"ed for di!erent cases of
damping and load frequency. The Green function corresponding to an impulse line load is
obtained and can be numerically computed. The theorem of residue is then utilized to
evaluate the generalized integral of the Green function corresponding to a harmonic line
load. This representation permits one to construct algorithms for the parameter
identi"cation of the inverse problem involved in a pavement non-destructive test. Validation
of the result is partly veri"ed by comparing the static solution of a point source obtained
from this paper to a well-known result.

( 2001 Academic Press
1. INTRODUCTION

Non-destructive testing (NDT) and evaluation have received much attention in the "eld of
pavement engineering since the 1980s (see references [1}4]). As two of the most commonly
used non-destructive testing devices for pavement structural evaluation, both falling weight
de#ectometer (FWD) and Dyna#ect apply dynamic loads on the pavement surface. The
primary di!erence between the loads applied by the FWD and the Dyna#ect is that the
former is an impact load, while the latter is a steady state load, i.e., a vibratory load (see
reference [2]). The structural evaluation is achieved based on the response of the pavement
structure to the dynamic load.

Given the complexity of the inverse problems, currently, a widely used technique for the
parameter estimation of pavement structures involves the use of the forward static analysis
of the pavement structure, and then a comparison of the measured response with the
calculated response. Usually, the physical model for simplifying rigid pavements (cement
concrete pavements) is a plate on either an elastic Winkler foundation or an elastic
half-space (see reference [5]). Parameters of pavements are eventually determined by
selecting the parameters of a pavement structure whose calculated response is closest to the
measured response in terms of certain objective functions (see reference [6]). Clearly, since
the calculated response of the pavement is based on the static analysis, which ignores the
time, inertial and damping e!ects, the theoretical model is apparently inconsistent with the
realistic loading condition (see reference [3]).

To better understand the dynamic response of pavement structures to the FWD and
Dyna#ect loading, it is indispensable to analyze the fundamental response of pavement
0022-460X/01/370337#12 $35.00/0 ( 2001 Academic Press
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structures under impact and vibrating loads. Several "nite-element procedures have been
developed to carry out the response of a thin plate to dynamic loads (see references [7}9]).
Regarding the analytical solution, the response of an in"nite plate on an elastic foundation
to harmonic plane waves has been investigated for many years. Deshun [10] applies the
variational principle to solve the vibration of thick plates. The vertical vibration of an
elastic plate on a #uid-saturated porous half-space subjected to a harmonic load is
investigated by Bo [11], in which the Hankel transform is used to convert the governing
equation to a Fredholm integral equation of the second order and numerical calculation
can then be carried out.

Another motivation for studying this problem is the fact that the fundamental solution of
plate plays an important role when the boundary element method (BEM) is applied to treat
the dynamic problem of a plate resting on an elastic foundation. It has been demonstrated
that pavement loading is a random process (see reference [12]). The boundary integral
equation suitable to analyze the static response of a plate on an elastic foundation is derived
based on the analytical representation of the static fundamental solution of a thin plate. The
availability of the dynamic fundamental solution of a thin plate is theoretically of value for
applying the BEM to the dynamic analysis of a thin plate.

This paper studies the analytical solutions of a thin plate (i.e., the rigid pavement model)
on a viscoelastic foundation subjected to an impulsive line load and a harmonic line load.
The impulse response of the plate serves as a fundamental solution for constructing the
dynamic response of a plate to the FWD load in the time domain, and the harmonic
response of the plate serves as a fundamental solution for constructing the dynamic
response of the plate to the Dyna#ect load in the frequency domain.

2. THE GOVERNING EQUATION

Figure 1 depicts the co-ordinate system and signi"cant dimensions. The in"nite length of
the plate runs along the x- and y-axis respectively. Three assumptions are made to simplify
the mathematical model of a thin plate. These assumptions are: (1) the strain component e

z
in the perpendicular direction of the plate is su$ciently small to be ignored; (2) the stress
components q

zx
, q

zy
, and p

z
are far less than the other stress components; therefore, the

deformation caused by q
zx

, q
zy

, and p
z
is negligible; and (3) the displacement parallel to the

horizontal direction of the plate is zero.
Denote the displacement of the plate in the z direction as = (x, y, t). Based on these

assumptions and the fundamental equations of elastodynamics, the governing equation for
Figure 1. A thin plate resting on a viscoelastic foundation.
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the de#ection of the plate can be derived by considering the balance of all the forces acting
on the element (x, x#dx; y, y#dy). Those forces are the impressed force distribution
F(x, y, t), the shearing force, the restoring force from the foundation q (x, y, t), and the
inertial force ohL2=/Lt2. The well-known result is (see references [13, 14])

D+ 2+ 2=(x, y, t)#oh
L2

Lt2
= (x, y, t)"F (x, y, t)!q (x, y, t), (1)

where the Laplace operator + 2"L2/Lx2#L2/Ly2. Also, the so-called sti!ness of plate
D"Eh3/[12(1!k2 )], h is the thickness of plate, o is the density of plate medium, and
E and k are Young's modulus of elasticity and the Poisson ratio of the elastic plate
respectively.

As one of the most commonly used foundation models in rigid pavement design (i.e.,
cement concrete pavements), the Winkler elastic foundation model performs well in many
circumstances (see references [13}16]). The Winkler foundation model assumes that the
reactive pressure is proportional to the de#ection of the plate, that is q"K=. The term
K is called the modulus of subgrade reaction. The assumption that K is constant implies
linear elasticity for the subgrade. In reality, damping e!ects appear in any dynamic system.
If the damping e!ect of the subgrade is considered, the restoring force q"K=#CL=/Lt.
This is a viscoelastic foundation model consisting of a spring of strength K and a dashpot of
strength, C, placed parallel. Substitution of the restoring force into equation (1) gives

D+ 2+ 2=(x, y, t)#K= (x, y, t)#C
L
Lt
=(x, y, t)#oh

L2

Lt2
=(x, y, t)"F (x, y, t). (2)

3. THE GREEN FUNCTION

According to the theory of mathematical}physical equation, the Green function of
a partial di!erential equation represents the fundamental solution of the equation as the
load condition is in the form of the Dirac-delta function (see references [13, 17]). For the
current problem, the Green function of the plate is de"ned as the solution of equation (2),
given that the external excitation F (x, y, t) is characterized by

F (x)"d(x!x
0
), (3)

in which x"(x, y, t), x
0
"(x

0
, y

0
, t

0
), d (x!x

0
)"d(x!x

0
)d (y!y

0
)d (t!t

0
), and d( ) ) is

the Dirac-delta function. It is de"ned by

P
=

~=

d (x!x
0
) f (x) dx"f (x

0
). (4)

De"ne the three-dimensional Fourier transform and its inversion as

fJ (n)"F[ f (x)]"P
=

~=
P

=

~=
P

=

~=

f (x) exp(!inx) dx, (5a)

f (x)"F~1[ fJ (n)]"(2n)~3P
=

~=
P

=

~=
P

=

~=

fJ (n) exp(inx) dn , (5b)
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where n"(m, g, u), F[ ) ] and F~1[ ) ] are the Fourier transform and its inversion
respectively. To solve the Green function, take the three-dimensional Fourier transform of
both sides of equation (2):

D (m2#g2)2GI (n; x
0
)#KGI (n; x

0
)#iCuGI (n; x

0
)!ohu2GI (n; x

0
)"FI (n), (6)

in which FI (n) is the Fourier transform of F (x), and the displacement response =(x) has
been replaced by the symbol G (x; x

0
) to indicate the Green function, in which x represents

the spatial position where the response of interest is located and x
0

represents the source
position where the load is applied. Also, the following property of Fourier transform is used
in the derivation of equation (6):

F[ f (n) (t)]"(iu)nF[ f (t)]. (7)

Since FI (n) is the representation of F (x) in the frequency domain, we also need to evaluate
FI (n). This can be implemented by taking the three-dimensional Fourier transform of both
sides of equation (3),

FI (n)"P
=

~=
P

=

~=
P

=

~=

d (x!x
0
) exp(!inx) dx"exp(!inx

0
), (8)

in which the property of the Dirac-delta function, i.e., equation (4), is utilized for evaluating
the above integral. Substituting equation (8) into equation (6) and realizing that equation (6)
is an algebraic equation, we obtain

GI (n; x
0
)"exp(!inx

0
)[D (m2#g2 )2#K#iCu!ohu2]~1. (9)

The Green function given by equation (9) is in the frequency domain and we need to convert
it into the time domain. To achieve this, we take the inverse Fourier transform of
equation (9) and obtain

G(x; x
0
)"(2n)~3P

=

~=
P

=

~=
P

=

~=

exp[in(x!x
0
)][D(m2#g2)2#K#iCu!ohu2]~1dn.

(10)

Formula (10) is the Green function of the plate on a viscoelastic foundation. The Green
function serves as a fundamental solution of a partial di!erential equation. It can be very
useful when dealing with linear systems.

4. THE IMPULSE RESPONSE FUNCTION

The impulse response function (IRF) of the plate plays an important role when
constructing solutions corresponding to non-concentrated loads. We de"ne the IRF as the
solution of equation (2) given that the term on the right-hand side of equation (2) takes the
form

F
IRF

(x)"(2r
0
)~1d(y)d (t)[H(x#r

0
)!H(x!r

0
)], (11)
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where r
0

is the half-length of the line load and H(x) is the Heaviside function, de"ned as
H(x)"1 for x'0, H(x)"0 for x(0, and H(x)"1

2
for x"0. According to the theory of

linear partial di!erential equation, the solution of equation (2) given that F (x) is taking the
form of formula (11) can be constituted by integrating the Green function in all dimensions,
i.e.,

= (x)"P
=

~=
P

=

~=
P

=

~=

F (x
0
)G(x; x

0
) dx

0
. (12)

Denote the IRF as h
Line

(x) and replace the symbol of displacement=(x) in equation (2) by
h
Line

(x). Substituting equations (10) and (11) into equation (12) and applying property (4) of
the Dirac-delta function twice, we see that

h
Line

(x)"
1

(2n)3 P
=

~=
P

=

~=
P

=

~=

H(r2
0
!x2

0
)exp(inx)exp(!imx)

2r
0
[D(m2#g2)2#K#iCu!ohu2]

dndx
0
. (13)

To evaluate this generalized integration, note that

P
=

~=

H(r2
0
!x2

0
)exp(!imx)

2r
0

dx
0
"P

r0

~r0

exp(!imx)

2r
0

dx
0
"

sin mr
0

mr
0

, (14)

in which the Euler formula

exp(i1)"cos 1#i sin 1 (15)

is used. Compare equations (13) and (14), we can rewrite equation (13) in a more concise
form,

h
Line

(x)"
1

(2n)3 P
=

~=
P

=

~=
P

=

~=

sin mr
0
exp(inx)

mr
0
[D(m2#g2 )2#K#iCu!ohu2]

dn. (16)

Formula (16) is the IRF of the plate corresponding to a line load of the form of
equation (11). For the IRF corresponding to a point load F

Point
(x)"d (x)d (y)d(t), it can be

simply obtained by taking limit on both sides of equation (16), i.e.,

h
Point

(x)"
1

(2n)3 P
=

~=
P

=

~=
P

=

~=

exp(inx)

D(m2#g2 )2#K#iCu!ohu2
dn. (17)

Here, the following limit is used in the derivation:

lim
r0?0

sin mr
0

mr
0

"1. (18)

5. THE FREQUENCY RESPONSE FUNCTION

In this section, we use the Green function obtained in the previous section to construct
the frequency response function (FRF) of the plate (i.e., the time}harmonic Green function
of line loads). Denote by=(x) the solution of equation (2) given that the external load is
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a harmonic line load with the center located at the origin of the co-ordinate system, i.e.,

F
FRF

(x)"(2r
0
)~1H(r2

0
!x2

0
)d(y)exp(iXt), (19)

in which X is the frequency of the harmonic load. The solution of equation (2) with the
right-hand-side term of this type, i.e., equation (19), becomes a steady state solution, which
can be expressed as

=(x)"H
Line

(x, X) exp(iXt). (20)

Here, H
Line

(x, X) is denoted as the FRF of the plate. Expression (20) simply means
that, although the response of the plate may have a phase di!erence with the external
excitation, which is re#ected in the FRF, both the response and excitation have an identical
frequency X.

Substituting equations (19) and (20) into equation (12) and applying property (4) of the
Dirac-delta function twice, we see that

=(x)"P
t

~=
P

=

~=
P

=

~=
P

=

~=

sin mr
0
exp(inx)exp[i(X!u)t

0
]

mr
0
[D(m2#g2)2#K#iCu!ohu2]

dndt
0
. (21)

Notice the equality of integration

P
=

~=

exp[i(X!u)t
0
] dt

0
"2nd(X!u). (22)

Substituting equation (22) and reapplying equation (4) to formula (21) gives

= (x)"
1

(2n)2 P
=

~=
P

=

~=

sin mr
0
exp(iut)exp(inx)

mr
0
[D (m2#g2 )2#K#iCX!ohX2]

dmdg. (23)

By comparing equation (23) with equation (20) it is straightforward to "nd

H
Line

(x, X)"
1

(2n)2 P
=

~=
P

=

~=

sin mr
0
exp(inx)

mr
0
[D(m2#g2)2#K#iCX!ohX2]

dmdg. (24)

Similar to the case of the IRF corresponding to a point load, the RFR H
Con

(x, X)
corresponding to a concentrated harmonic load F

Con
(x)"d (x)d (y) exp(iXt) can also be

obtained by taking limit r
0
P0 on both sides of equation (24), i.e.,

H
Con

(x, X)"
1

(2n)2 P
=

~=
P

=

~=

exp(inx)

D(m2#g2 )2#K#iCX!ohX2]
dm dg. (25)

As formula (25) contains a double generalized integral, it is time consuming to evaluate
equation (25) if the numerical computation is carried out. Indeed, the FRF given by
equation (25) can be further simpli"ed to a single generalized integral.

De"ne co-ordinate transformations

x"r cos h, y"r sin h, m"f cost, g"f sint. (26)
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Substitute equations (26) into equation (25) and reorganize the terms:

H
Con

(r, X)"
1

(2n)2 P
=

0
P

2n

0

expMi[rf sin(h#t)]N
Df4#K#iCX!ohX2

fdfdt. (27)

Here, the following equality is used:

sin h cost#cos h sin t"sin(h#t). (28)

Applying Euler formula (15) to equation (27) we obtain

H
Con

(r, X)"
1

(2n)2 P
=

0
P

2n

0

cos[rf sin(h#t)]

Df4#K#iCX!ohX2
fdf dt. (29)

From the theory of special function we know that the Bessel function can also be expressed
in terms of integration (see reference [18]).

J
0
(z)"(2n)~1 P

2n

0

cos(z cos/) d/, (30)

in which J
0
( ) ) is the zeroth order Bessel function of the "rst kind. Substituting equation (30)

into equation (29) gives the "nal result of the FRF:

H
Con

(r, X)"
1

2n P
=

0

J
0
(rf)

Df4#K#iCX!ohX2
fdf. (31)

Moreover, if the same co-ordinate transformation (26) is employed to simplify equation (17),
the IRF h

Point
(x) can be further expressed in a more concise form as

h
Point

(r, t)"
1

(2n)2 P
=

~=
P

=

0

J
0
(rf)exp(iX t)

Df4#K#iCX!ohX2
f dfdX . (32)

So far we have obtained the FRFs H
Line

(x, X) and H
Con

(r, X) in the rectangular and
cylindrical co-ordinate system respectively. By comparison of equations (16) and (24), it is
clear that, on the one hand, the FRF is the Fourier transform of the IRF, while on the other
hand, h

Line
(x)"(2n)~1 :=

~=
H

Line
(x, X ) exp(iXt) dX . In general, the FRFs given by

equations (24) and (31) are complex functions and can only be calculated numerically.
However, in some special cases the FRF can be analytically evaluated.

6. SPECIAL CASES

6.1. STATIC SOLUTION

It is of interest to examine the static solution by applying results (24) and (31). If the static
solution obtained here is the same as the static solution obtained using other procedures,
the correctness and validity of this paper can be veri"ed to some degree.
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For a static load, we have F
Line}sta

(x)"(2r
0
)~1H(r2

0
!x2 )d (y) and F

Con} sta
(x)"d(x)d (y).

The static solution of equation (2) corresponding to the static load can be achieved by
letting X"0 in equations (24) and (31):

H
Line} sta

(x)"
1

(2n)2 P
=

~=
P

=

~=

sin mr
0
exp(inx)

mr
0
[D (m2#g2)2#K]

dmdg, (33a)

H
Con}sta

(r)"
1

2n P
=

0

J
0
(rf)

Df4#K
f df. (33b)

Expression (33b) is consistent with the known result (see reference [19]).

6.2. ELASTIC FOUNDATION

If damping is ignored in equations (24) and (31), the viscoelastic foundation degrades to
an elastic foundation and the FRFs become

H
Line

(x, X)"
1

(2n)2 P
=

~=
P

=

~=

sin mr
0
exp(inx)

mr
0
[D(m2#g2)2#K!ohX2]

dm dg, (34)

H
Con

(r, X )"
1

2n P
=

0

J
0
(rf)

Df4#K!ohX2
fdf. (35)

It is of interest to evaluate the integral of equation (34) for the displacement response of
the center of the load. In this case, we have

H
Line

(0, X)"
1

(2n)2r
0
D P

2n

0
P

=

0

sin(fr
0
cost)

(f4#KM /D)cost
df dt, (36)

where the equivalent sti!ness KM "K!ohX2 and the transformations m"m cost
and g"f sint are used in the derivation of equation (36). We have the Taylor
expansion

sin(fr
0
cost)

r
0
cost

"

1

r
0
cost

=
+
n/0

(!1)n
(fr

0
cos t)2n`1

(2n#1)!
"

=
+
n/0

(!1)n
r2n
0

f2n`1 cos2nt
(2n#1)!

(37)

and the integration evaluated by parts

P
2n

0

cos2nt dt"Csint
n~1
+
k/0

(2n)! (k!)2 cos2k`1t
22n~2k(2k#1)!(n!)2

#

(2n)!t
22n(n!)2D K

2n

0

"

2n(2n)!

22n(n! )2
. (38)

Substituting equations (37) and (38) into equation (36) we obtain

H
Line

(0, X)"
1

4nD

=
+
n/0

(!1)nr2n
0

22n (n!)2(2n#1) P
=

0

u2n

u2#KM /D
du, (39)

where u"f2.
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0
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0
and (c) X(X

0
.
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For the case of the excitation of a harmonic point load, H
Con

(0, X) can be obtained by
taking the limit on both sides of either equation (39) or equation (35). It is noted that
lim

z?0
J
0
(z)"1 and we can further evaluate equation (35) for the limit as

H
Con

(0, X)"lim
r?0

1

2n P
=

0

J
0
(rf)

Df4#K!ohX2
fdf"

1

4nD P
=

0

1

u2#KM /D
du. (40)

The integrand (u2#KM /D)~1 is drawn in Figure 2 for the non-negative region of u. In the
following, three distinct cases of the harmonic frequency X will be discussed for evaluating
H

Con
(0, X).

Equation (40) can also be written as

H
Con

(0, X)"G
(4n/D)~1 P

=

0

(z2#1)~1dz, X(X
0
,

(4nD)~1 P
=

0

z~2dz, X"X
0
,

(4n/D)~1 P
=

0

(z2!1)~1dz, X'X
0
,

(41)

where /"( DKM D/D)1@2 , and the resonance frequency X
0
"JK/oh.

For the case X(X
0
, it is straightforward to develop the integral of equation (41) into

a closed form, i.e.,

H
Con

(0, X)"
1

4nJKM D
arctgS

D

KM
u K

=

0

"A[1!(X/X
0
)2]~1@2 , (42)

in which A"(8JKD)~1. It can be seen that the amplitude of H
Con

(0, X) tends to be in"nite
as the harmonic frequency approaches the resonance frequency.

For the case of X"X
0
, since :=

0
z~2dz"!z~1 D=

0
, a singularity of the order o(z~1)

appears when evaluating an integral of this type. This means a resonance phenomenon will
occur if X"X

0
. Therefore, the integral of equation (41) becomes in"nite and does not exist.

For the case of X'X
0
, the complex function technique is used to evaluate this

generalized integral. Two poles of the "rst order are found and they are, respectively,
located at (!1, 0i) and (1, 0i) of the complex z-plane. Since integral (41) is integrated along
the positive direction of the real axis, the pole at (!1, 0i) does not contribute to the
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integration. As far as the other pole is concerned, it is exactly located on the positive real
axis. However, if a small amount of damping is present, and this is always the case for any
physical dynamic system in reality, this second pole will be slightly lower down into the
fourth quadrant of the complex plane. Therefore, if an integral route is selected along the
positive direction of the real axis, there is no need to construct a small contour, such as
a half-circle with minus radius, to avoid encountering this pole.

The contour for evaluating this integral, plotted in Figure 3, consists of three segments, in
which C represents a quarter-circle with a radius R. Clearly, no pole is embraced by this
closed contour.

According to the theorem of residue, integration (41) along the closed route becomes zero
as RPR, i.e.,

Q" lim
R?= Ap.v. P

R

0
P
C
P

0

R
B"0, (43)

in which the abbreviation, p.v., represents the Cauchy principal value of the integration
(4n/D)~1 :=

0
(z2!1)~1dz. For the z value along the route :0

R
, it is clear that we have

z"l exp(in/2) and dz"exp(in/2)dl. Hence, the integration

lim
R?= C(4n/D)~1 P

0

R

(z2!1)~1 dzD" lim
R?= C!(4n/D)~1 P

0

R

i(l2#1)~1dlD
"i (4n/D)~1arctg l D=

0
"i(8/D)~1. (44)

For the z value along the contour C
0
, we have z"exp(i0 )R and dz"i exp(i0 )R d0 as

RP#R. The integration :
C2

becomes

lim
R?= C(4n/D)~1 P

C

(z2!1)~1dzD" lim
R?= C(4n/D)~1 P

n@2

0

i exp(i0 )R

1!R2 exp(i20 )
d0D"0. (45)

Comparing equations (43)} (45) and rearranging the order of the terms of formula (35), it is
found that H

Point
(0, X) becomes

H
Con

(0, X)"!iA[X/X
0
)2!1]~1@2. (46)
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0
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0
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The amplitude of FRF at the location (x, y)"(0, 0) with respect to the frequency X of the
external load is shown in Figure 4. It can be seen that the amplitude of H

Con
(0, X) tends to

be in"nite as the harmonic frequency approaches the resonance frequency.

7. CONCLUSIONS

The Fourier transform is used to derive the integral representation of the time}harmonic
Green function of a plate under a line load. The dynamic de#ection of a plate on
a viscoelastic foundation subjected to both impulse and harmonic line loads are obtained by
using the integral transformation method. The solution is "rst given as a convolution of the
Green function of the plate. Poles of the integrand in the integral representation of the
solution are identi"ed for di!erent cases of the foundation damping and the load frequency.
The IRF is then obtained and can be numerically computed. A closed-form solution in
terms of algebraic series corresponding to the FRF of the plate under a concentrated load is
obtained. Numerical computation is used to illustrate the variation of FRF with respect to
harmonic frequency. This analytical representation permits one to construct algorithms for
the parameter identi"cation of the inverse problem involved in pavement non-destructive
test. The validity of the result is partly veri"ed by comparing the static solution of a point
source obtained from this paper to a well-known result.
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